Skip to main content

Aligned Elements - die ALM Software für Ihr Design History File

5 Tips for writing better User Needs

 

In the beginning, there was the User Need.

According to FDA, the User Needs are the starting point for building a safe and efficient medical device. However, User Needs can be elusive to an engineering team used to rigid techniques and accustomed to having "full information" when approaching a problem.

bikeIt is rather rare that the developer has the real and deep experience a User has and it can therefore be precarious to leave the User Need elicitation process in the hands of an engineering team. Here are some tips for eliciting better User Needs.

Consider the Intended Use

It has been said 100 times before, but I say it again: start out by considering the Intended Use and Indication for Use.

These two items will tell you:

  • who is the device for (or rather, who do you say the device is for)
  • why (or for what) is the user using this device (or rather, for what you say the device is to be used for)

The whole idea here is to get as close as possible to the user and the situation in which the user applies the device. What medical condition is the device intended to address? Where and under which circumstances is the device being used? In a hospital or an ambulance? During the night? In the rain? By a child? By a blind person?

Answering these questions will put you in the shoes of the user and will let you describe the user's needs in his or her own words. Imagining being the user in the situation where the need for using the device arises will also give you an idea of the constraints facing the user at the time of application.

Thus, considering the "who" and the "why" is generally a more fruitful starting point than elaborating on the "how" (which is what engineers tend to do).

Who is the user?

In a majority of cases, a medical device is handled by more than one type of User during the product's life cycle. This becomes clear when considering non-core usage tasks such as:

  • transportation
  • installation
  • calibration
  • maintenance
  • service
  • decommissioning

How did the device arrive at the usage location? How and by whom was it deployed? Was it carried in a pocket? Was it transported by air? 

Apparently, it is important to consider all people involved with the handling of the device since these actions may have safety implications. Again, do not second guess the needs of these users but involve them in the process.

User Needs can be vague

Using fuzzy language (such as adverbs) when documenting requirements is a known bad-practice. However, User Needs may be written in a less prescriptive way if it captures important aspects of the User and the Usage. We know that, in the end, the Medical Device will end up being very concrete and void of any fuzziness.

The challenge thus lies in translating the potentially fuzzy language used in User Needs into concrete specifications in the Design Input Requirements and concrete Validation Tests. Make sure that the User Needs are well understood by the team deriving the Design Input Requirements and Validation Tests from the User Needs.

Not all input is User Needs

Costs, brand colors, production constraints are examples of important design input that are not necessarily User Needs. I usually recommend to my clients that they add an additional Design Control type for Stakeholder Needs in order to pick up this input which definitely influences the design, although it is not always required to be verified or validated.

When setting up the validation activities, you must be explicit about what you intend to validate and explicitly define the criteria applied to make this selection. By separating the input in the two mentioned Design Control Types makes it easy to explain which Design Controls are intended for validation (User Needs) and which are not (Stakeholder Needs).

Write User Needs with Validation in mind

The way User Needs are written will heavily influence the Validation activities. Since Validation is a resource-intensive (and therefore expensive) activity, it makes sense to keep a close eye on the proposed validation work that will be derived by a User Need when writing it.

If some of the validation activities are already known at an early stage, the team can use this knowledge to cleverly formulate the User Needs in a way to maximize the coverage of the known validation activities. By this, I do not mean that important User Needs should be left out but rather than formulating and structuring the combined User Needs can have a positive or negative impact on the validation effort.

By following these simple guidelines, you should be able to get more bang for the buck next time you elicitate User Needs.

Aligned Elements, the medical device ALM, manages end-to-end traceability of all Design Control items, including User Needs, Design Input Requirements, Validation and Verification Testing. If you are interested in an online demonstration of Aligned Elements, let us know on Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein.

Cybersecurity Risk Assessments for Medical Devices - 5 important aspects

The medical device as a stand-alone product is a waning concept.

The desire to make use of the information collected in a medical device in other health systems, coupled with recent advancements in networks and interconnectivity has resulted in more devices being connected to the Internet. As a consequence, they have become more vulnerable to hackers.

A 2015 KPMG survey found that 81 percent of health care organizations had their data compromised within the previous two years.

FBI reports (FBI Cyber Division PIN (Private Industry Notification) #140408-010) that due to the transition of paper to electronic health records, lax cybersecurity standards and higher financial payout for medical records in the black market, the "cyber actors will likely increase cyber intrusions against health care systems". 

During 2016, several ransom-attacks were launched against health institutions in the United States with wide-ranging consequences. 

FDA has shown heightened interest in cybersecurity issues and released three guidelines during the last two years. Medical Device manufacturers are likely to focus more on cybersecurity risk management activities in the near future and assign additional resources accordingly.

One integral part of the cybersecurity risk management process constitutes the risk assessment.

Performing risk assessments is a core activity in the medical device industry and many of the available techniques are well-known and well-used by industry professionals. Having long and thorough experience of risk management might lead the same professionals to believe that cybersecurity issues can be harnessed by the tools already at hand.

There are, however, key aspects where cybersecurity risks differ from traditional medical device risks.

Risk identification and the building blocks of a cybersecurity risk

The fundamental challenge during risk identification is to ensure that all relevant risks have been identified.

Verifying that this criterion has been fulfilled is often difficult and therefore structural help and practical advice is very welcome.

Due to the wide variety of possible medical device types, ISO 14971, the standard for medical device risk management, understandably has a hard time defining concrete identification techniques that are relevant enough to provide value for every kind of medical device. 

IT risk management, operating in a narrower technical scope, provides a host of techniques, tailored to this domain. Many of these techniques are based around the asset-vulnerability-threat model. 

These components can be described as followed.  

  • Assets are the entities a cyber-intruder attempts to access and control. An asset has a value to the patient and therefore also to an intruder. In a safety-related context, we can exemplify assets as device configurations, health data, medical device functions, or battery power.
  • Vulnerabilities represent weaknesses in the medical device that, when exploited, can give an intruder access to an asset. Software bugs, application design flaws, and insufficient input validation are examples of software vulnerabilities. But vulnerabilities can also be found in hardware, business processes, organizational structures, and interpersonal communication.
  • A threat is defined as an event with the potential to an adverse impact on an asset. The threat is executed by a threat agent (i.e. an intruder) exploiting a vulnerability in order to access an asset.

A combination of these building blocks describes a cybersecurity risk. 

As a starting point, the manufacturer should be able to enumerate assets for the given device. By analyzing how these assets can be targeted, e.g. by performing a “Threat modeling analysis”, using a data flow analysis of the application, identifying "data-at-rest" (data storage) and "data-in-motion" (data transfer) will further help the manufacturer to identify vulnerabilities and threats, particular to the medical device.

Bottom-line: Identifying assets, threats, and vulnerabilities will support the manufacturer when enumerating potential cybersecurity risks. The identified items should be listed in the risk management documentation.

What is the probability of a cyber attack?

The Medical Device industry takes its risk assessment cues from ISO 14971, which defines risk as the combination of the probability of the occurrence of harm and the severity of that harm. 

The computer security industry, on the other hand, has used several kinds of assessment methods to estimate the "riskiness" of cybersecurity risks. None of them rely solely on the probability and severity of an event. Instead, these techniques estimate and/or quantify aspects of the assets, threats, and vulnerabilities that in combination say something about the computer security risk. 

So how can the medical device risk assessment methods concerned with the safety of patients be connected with techniques whose primary concern is information security?

In the AAMI paper "TIR 57 - Principles for medical device security - Risk Management", the authors address this discrepancy and attempt to transpose the cybersecurity line of thinking into the domain of ISO 14971. 

It is easy to see how the "potential adverse effect" can be regarded as analogue to the “Harm” in ISO 14971 and be quantified with a corresponding severity.

The probability factor in ISO 14971 does not have a direct equivalent in the cybersecurity risk domain. A composite factor called "exploitability" combining characteristics of the vulnerability, the threat agent, and the medical device itself is mentioned in the FDA guidelines. This factor intends to indicate the amount of work involved in order to invoke a successful attack.

The AAMI TIR57 group suggests a two-pronged approach to establish something similar, combining two likelihood factors.

The first factor, the “Threat Likelihood”, defines the likelihood of the threat agent having the motivation, skills, and resources to exploit a given vulnerability.

The second factor estimates the likelihood of harm being the effect of an exploited vulnerability.  These two factors in combination make out the probability of the cybersecurity risk.

Note that this approach is similar to the P1 (probability of the hazardous situation occurring) / P2 (probability of the hazardous situation causing harm) frequently used in the medical device community.

Information security theory recognizes that aspects and characteristics of the threat agent, the vulnerability, and the device itself drive these factors.

Bottom-line: caution shall be taken when estimating probability/likelihood/exploitability for cybersecurity risks. The manufacturer's Risk Management SOP shall address this concern accordingly and be adapted if necessary.

The drivers of cybersecurity risks

During classic medical device risk assessments, the identified causes leading to hazardous situations and potentially to harms are in most cases accidental. Although malicious use should be considered, this area often receives considerably less attention than harms caused by accidental events. 

For cybersecurity risks, the opposite is true. Here, a significant factor in the causal chain constitutes the intentional behavior of a threat agent causing harm by exploiting a vulnerability.

Whereas the software flaw might have been created accidentally, exploiting it is an intentional act.

A malicious agent may come in many shapes and forms, such as a criminal organization, a competitor, or disgruntled employees. Each of these has its own motivation, skill set, and reach when it comes to detecting and exploiting vulnerabilities, which affects the likelihood of a vulnerability being exploited as we have seen above.

Therefore, not only needs the focus to be shifted from accidentally caused risks to intentionally caused risks. The manufacturer benefits from analyzing the characteristics of the malicious intruder in order to do a proper risk assessment.

Bottom line: Manufacturers will need to shift perspective from accidentally caused risks to explicit maliciously caused risks during the identification and classification of the risk assessment.

The poisoned SOUP

Just like in the rest of the software industry, medical device companies use third-party libraries to increase productivity when developing medical devices.

These third-party libraries (or frameworks or applications), sometimes referred to as "SOUP" components (Software of Unknown Provenance) are of course also subject to cybersecurity scrutiny.

It is debatable if third-party components, and in particular open source components, are inherently more unsafe than proprietary produced applications (there are several arguments against such claims).

Regardless of this claim, it can be safely assumed that many of these libraries were not developed with a medical device cybersecurity context in mind. The security firm “Contrast Security” reports that 26% of downloaded SOUP:s contained known vulnerabilities and were still applied.

It shall be noted that SOUP:s themselves often rely on and integrate third-party software, which increases the scope of the problem accordingly.

The medical device manufacturer is responsible for any vulnerabilities caused by SOUP:s in his device and must therefore analyses his SOUP:s accordingly.

This shall include a systematic inventory of SOUP:s, actively collecting information on current vulnerabilities in SOUP:s as well as applying timely updates of the SOUP:s when available.

Bottom-line: The manufacturer must have a clear plan for how to handle potential cybersecurity risks in SOUP:s. 

Skills required to assess cybersecurity risks

Cybersecurity vulnerabilities are largely made up of software flaws. Understanding the technical details of how such vulnerabilities come into being, the technical influence they have, and how they can be mitigated requires precise software knowledge. Including software developers in the assessment group is, therefore, a highly recommended measure.

It is a misconception that all software professionals are software security professionals. The majority of today’s information security problems can be traced to flaws in code. Many software developers lack basic training and understanding of cybersecurity. 

As already mentioned, the security scope for an interconnected medical device is much larger than the device itself. The network infrastructure in which connected medical devices operate is often outside the control of the medical device manufacturer but still has a great impact on the overall risk exposure and needs to be included in the risk assessment.

It is likewise a misconception that cybersecurity is a strictly technical field. Cybersecurity vulnerabilities are not exclusively found in hardware and software but also in business processes, organizational structures, human behavior, and the environment in which the device operates. A thorough understanding of where, how, and by whom the medical device will be operated is therefore important input for the risk assessment.

Last but not least, the clinical experts are required for estimating the potential harm of compromised availability, confidentiality, and integrity of the associated data.

All these competencies are required in order to perform a comprehensive cybersecurity risk assessment and it is clear that it stretches beyond being an internal R&D activity.

The risk assessment benefits from involving stakeholders beyond the immediate software development team. If specific cybersecurity expertise is lacking in the organization, the manufacturer should consider employing or train their own experts or outsource these functions to a competent partner.

Bottom-line: the knowledge required to perform a medical device cybersecurity risk assessment is both broader and deeper than what is often immediately available in many medical device companies. 

Conclusion

The medical device industry has extensive experience with risk management and risk assessment techniques.

The cybersecurity dimension of medical device development is an additional aspect where risk assessments can enhance safety.

However, traditional medical device risk assessment techniques need adaptation in order to successfully be applied to cybersecurity risks.

Cybersecurity risks consist of other aspects and other drivers than "classic" medical device risks and are best mitigated by recognizing these differences.

Do electronic signatures reduce cost for medical device manufacturers?

That medical device development entails a lot of documentation should not be a surprise to anyone. Hundreds of documents are created, reviewed, released, then modified, reviewed, and released again. The majority of these documents need to be signed, often by two persons or more. Collecting signatures, although it seems like a trivial task, becomes a significant nuisance when the number of documents and releases increases.

One of our customers insisted on having 3 people sign each test case before release. Their 18 000 test cases yielded a combined signature collection effort of 5 man-years (estimated 30 mins to collect a single signature, their estimation).

It is rare to find medical device manufacturers that enjoy writing medical device development documents, but it is even rarer to find those who gladly spend their days collecting signatures for the said documents.

The obvious question is hence: how can we spend less time on document signatures?

For many medical device manufacturers, the equally obvious answer seems to be electronic (or digital) signatures.

So why is it so hard to get a signature?

There are several potential reasons for this. Maybe the Signer is a very busy person and simply has no time for this task. Maybe the Signer is located somewhere else through work, traveling, vacation, or other reasons. Or perhaps the previous Signer did not pass on the document to the next Signer in line. Or maybe a formal signature sequence (order) is forced by the document process in question, where a Signer that actually is available, is prevented to carry out the task since some Signer further up the signing sequence has not fulfilled hers. Or it might be that the document in question cannot be signed before some other related document has been released (i.e. signed).

Thus, there can be formal reasons but also trivial reasons why a signature does not get timely collected.

The most trivial is of course that it is just hard to physically get the document in front of the Signer (or the other way around) for some reason or another. Once you get that far, the literary "stroke of the pen" is usually a quick affair. This is the perceived major efficiency benefit of Electronic Signatures. You do not have to physically get the document in front of the Signer. The document does not need to get passed around. The Signer can pull it up (from an E-Signing System) whenever he wants, from wherever he is. This allows a quasi-parallel execution of signatures. Two people on different sides of the planet can sign the same document at the same time (almost)! Costs associated with printing, sending, scanning, and storing the paper copy are eliminated. E-Signatures also entail increased measures of security, enhanced authenticity, resisting tampering, and also provide accurate signature audit trails.

Before explaining how to introduce an E-Signing System, let me say a few words about Digital and Electronic Signatures.

Digital and Electronic Signatures

Even though the terms are often used interchangeably, there are some notable differences between the two concepts.

According to FDA, Electronic Signatures are "Compilation of data (user name/password, dongles, biometric)", which is unique for a person. This can be used to sign documents and is as legally binding as a “wet signature”. The signature and the association with the signed entity (document) are stored in a database of the Signature System. Furthermore, not all E-Signing Systems leave a visual mark on the signed document that indicates that it has actually been signed.

Digital Signatures, on the other hand, require a Digital Certificate that ensures the identity of the signer. A part of that Digital Certificate gets embedded in the signed document during the signing process. As a result, the validity of the signature can be checked independently of the E-Signing System.

So, someone needs to guarantee the identity of the signer.

For Electronic Signatures, the organisation (the manufacturer) does this by using the validated E-Signing System.

For Digital Signatures, it is the issuer of the Digital Certificate that ensures the identity of the signer. Digitally signed documents often also contain a visible signature.

Obviously, there seem to be several advantages to using Digital Signatures. The validity of the signed document can be inspected independently of the E-Signing System, which is an advantage if the E-Signing System goes down, is corrupted or the system vendor goes bankrupt.

Any drawbacks?

Yes, a few. Obtaining a Digital Certificate from a third-party vendor is expensive and requires an administrative effort. There is the obvious question of where and how to store these certificates as well as associate them with the user. They also have the nuisance to expire after a while and therefore need to get regularly renewed. People also have a tendency to marry and change their names etc. which also leads to renewals. Furthermore, it is not guaranteed that the validity shows up correctly in third-party viewers (like Acrobat PDF Reader), for technical reasons having to do with root certificates.

An organisation can circumvent all this by issuing its own Digital Certificates. This is somewhat of an IT "adventure" but it can be done. Costs can then be lowered somewhat but there is still a significant administrative effort. Moreover, internally generated Digital Certificates can of course not be validated by third-party viewers (like Acrobat PDF Reader).

So, there are pros and cons with both options.

However, they have several similarities, and most important of all, both methods are recognized by the FDA.

Let's do E-SIgning!

Let's say we want to engage in eSigning (Electronic or Digital). What kind of effort can we expect to get this up and running?

Here is a shortlist of some of the steps:

  • Assess the E-Signing System for Part 11 / Annex 11 compliance
  • Qualify the E-Signing System Vendor as Supplier according to your QMS
  • Assign responsible roles and people for the E-Signing System
  • Install and configure the E-Signing System
  • Make or buy the Digital Certificates (if used)
  • Adapt your QMS to recognize E-Signatures and describe how they are intended to work
  • Prepare all the Document Templates to be used for eSigning (the system needs to know where in the document the signature shall be placed. Page nr, location on the page, margins, and spaces, etc).
  • Validate the E-Signing System
  • Create E-Signature User Guidelines and train all users in how to use it
  • Notify the FDA (which is compulsory)

There is thus a non-neglectable initial effort to set up the E-Signing System, and also an effort to keep it maintained, both from a process as well as from an IT perspective.

There are also several other things to consider before you decide to go down the Electronic Signature path:

Document Life Cycle

All documents have a life cycle and the signing is only a very small part of this process. You need to consider how the document gets into the E-Signing System, how it interfaces with other systems such as Document Management Systems, workflow engines, or e-Forms of which the document may be a part.

You also need to pay attention to how you plan to archive the electronic documents. This might seem like a trivial question but it is more depth here than you think.

External Users

If external users (as in external to your organisation) are going to use the system, you need to prepare a process where they get access to the E-Signing System, including setting up a corresponding user in the system with the appropriate Digital Certificate if applicable. These external users also need to get trained in how to use the system.

Hybrid Signature Situations

Are you going to end up with documents that are partly signed electronically and partly with traditional "wet signatures"? If so, you need a described process for this as well.

Ownership

Last but not least you need to establish who has the ownership of the E-Signing System. Is it the IT Department that usually acquires and maintains IT systems? Or is it the R&D department that probably is the most frequent user of the system? Or is it the HR department that is concerned with the identity of the people working in the organisation? This needs to be clarified before you start.

Predicted Outcome

As mentioned, an E-Signing System will decrease the effort of placing the document in front of the Signer. It will reduce costs associated with transporting the paper copy of the document. It will also potentially increase the security and authenticity of the documents.

But there are things an E-Signing System cannot do. Regardless of how deep you entrench E-Signatures as a paradigm in your organisation, you will almost inevitably have a residual number of documents that are signed with ink. Thus, no matter how much you push E-Signatures you will end up with a hybrid system, composed of documents signed electronically and documents signed with ink. Be prepared for this.

Then, a Signature System is per se an IT system with all the work it entails. It needs to be validated and maintained, people will repeatedly forget their credentials if they do not use the system frequently and there will be ubiquitous bugs and errors. This all means increased costs that need to be compared and contrasted with the costs by using a manual system.

Finally, an E-Signature System does not make bad processes good just by digitizing them. Overloaded employees will still remain overloaded regardless.

For which situations does E-Signatures make sense?

E-Signatures make sense when signing is a routine operation i.e. when a user makes several signings per week. E-signing for the occasional (or maybe even singular) CEO signature on a Product Requirements Document does not warrant the effort.  

Document types that are well suited for E-Signatures are those that exist in many instances and that have a comparably small amount of actual content (as in "quick to read"). Examples of such document types are time reports, expense reports, purchasing approvals, and test case documents.

Last but not least, maintenance is of course made easier if all Signers are part of the organisation (as opposed to involving multiple external users).

Efficient with and without E-signatures

If you find it cumbersome to collect signatures today, there are several ways you can scrutinize your organisation for efficiency improvements.

Analyse current signing process

Are all these signatures really necessary? Ask yourself why they were added ("It is required by our process" is not a valid answer) and most importantly, what does the particular signature mean? In what way does a particular signature make the document "better"?

Don’t get dependent on busy Signers

The overloaded Project Manager or CTO that never has time for signing is a common bottleneck in many organisations. Appoint deputies to all signing functions (the deputies shall also have deputies). Try to avoid sequentially forced signature sequences. They cost more than they bring. Finally, simply planning the signing occasion like a regular meeting (set up a meeting in the calendar) might yield some good results.

I hope this post has highlighted some of the pros and cons of employing Electronic Signatures. If there is anything I want you to take home it is probably this:

  • Signature efficiency stands and falls with the process, not the system
  • Analyse and improve the process first!!
  • E-signatures can be very beneficial in specific situations
  • E-signatures gains (i.e. speed gains) must be weighed against costs

Aligned Elements supports electronic as well as digital signatures of documents with automatic relaying to external Document Management Systems.

If you would like to get a demonstration of e-Signatures in Aligned Elements, just let us know.

How to document a powered Exoskeleton according to the FDA

A few years ago we could read articles claiming "Exoskeletons will one day replace wheelchairs". That the FDA regulates these kinds of devices is a clear sign that they are about to enter the mass market.

Miniaturization of electronics, a steep drop in manufacturing costs of mechatronic parts, increased computational power, more powerful batteries. A number of recent technical developments converge into the realization of exoskeletons growing nearer and nearer.

In this rapidly expanding field, competitors are scrambling to put their new models onto the market.

exoskeleton

In the beginning of 2015 FDA announced that power exoskeletons will be classified as Class II devices with Special Controls, which clarified the regulatory situation for these kinds of wearable devices. Special controls have been put in place to address a number of risk factors identified by the FDA to be associated with the usage of powered exoskeletons.

For those used to medical device development, both the risks as well as the suggested requirements are straightforward. They include among other things, thermal and electric safety, biocompatibility, and the obvious risk of falling to the ground.

To help exoskeleton manufacturers getting up and running with their documentation, we provided the Aligned Elements Exoskeleton Extension Package containing:

  • 9 Potential Hazards (including mitigation strategies) outlined as exoskeleton associated risk factors by the FDA
  • 38 exoskeleton Special Control Requirements deduced from 21 CFR Part 890 Docket No. FDA-2014-N-1903

This will give manufacturers a predefined starting point of setting up their Design History File with the intention of accelerating the documentation effort.

The Aligned Elements Exoskeleton Extension Package is downloadable here: Aligned Elements Exoskeleton Extension Package

 

ISO 13485:2016 is finally here!

On March 3rd, the 2016 revision of ISO 13485 was finally released. The new revision is essentially an evolution of the 2003 revision and includes a number of changes and clarifications.

For Aligned Elements users, a change in section 4.1.6 might have some important implications. Whereas ISO 13485:2003 did not explicitly require computer systems used in the quality management system to be validated, the 2016 edition certainly does. ISO 13485 is now finally on par with FDA 21 CFR 820 on this matter.

csv

Computer Software Validation is used to ensure that each computer system fulfills its intended purpose. It prevents problems with the software to reach the production environment. CSV is today used in many regulated industries and is today regarded as a good manufacturing practice.
Aligned Elements certainly fall into the category of Computer systems that must be validated according to ISO 13485:2016 and FDA 21 CFR 820. If you do not have CSV process in place, we do have some things that may help you.

Why is Aligned Elements not validated by Aligned AG?

Aligned Elements falls into the GAMP 5 Software category 4 - "Configurable Software". AE is a highly configurable software with the purpose of mapping the customer's QMS, as opposed to forcing the customer to change his processes and templates to match Aligned Elements.
When validating a software of Category 4, it is of course the particular configuration of the software that is validated. Since each Aligned Elements customer is using a different configuration (each customer has its individual QMS), we cannot foresee which configuration our customers will use.
As mentioned, we do supply a number of useful tools to make the validation process faster.

What do I need in order to validate Aligned Elements?

Even though ISO 13485:2016 and FDA 21 CFR 820 require Computer Systems used in the Quality Management System to be validated, they do not explicitly described how to do it. This is up to each organisation to decide.
With no intention to be a complete listing, you need at least the following things:

  1. A Standard Operating Procedure (SOP) that describes how Computer Software is validated in your organisation
  2. A validation plan, that describes:
    • INTENDED USE of the computer system in question
    • WHAT are you validating, i.e. which name, version, and configuration of the software including manuals and supplier information and target environment
    • WHY are you validating this software to this particular extent (hint: the GMP Software Categories are a good starting place. A risk-based approach is also a viable starting point.)
    • WHO is responsible for the software, for the maintenance of the software and who is responsible for the validation
    • HOW do you intend to validate the software, what the acceptance criteria are, and in particular how do you intend to handle software errors detected during the validation
    • DELIVERABLES i.e. the documentation you intend to provide
  3. Requirements and/or use cases describing how you intend to use the Computer Software.
  4. Tests verifying that the use cases and documenting any deviations found.
  5. A Validation Summary or Report stating the result of the validation, preferably with some kind of traceability, and whether the Computer Software should be cleared for use in the production environment

To make this process a bit simpler, we provide our customers with a pre-filled example validation kit of Aligned Elements that can be adapted to the individual needs of each organization.

Can Aligned Elements be used to document the validation of other systems?

Absolutely. Aligned Elements is very well equipped for documenting the validation of other systems (provided AE has been validated, of course). AE supports all steps of the CSV process, from evaluating the validation extent via checklists or using a risk-based approach, documenting requirements, use cases and test cases, executing test cases, analysing the test results, and finally supplying the necessary traceability reports.

Learn more about how Aligned Elements can help with achieving regulatory compliance

Request a live demo and let us show you how Aligned Elements can manage your documentation

Medical Device Cybersecurity Risk Management

Performing Medical Device Cybersecurity Risk Assessments is something we Medical Device Manufacturers must get used to. And the sooner the better, During 2016 and 2017 a mounting number of health associated cybersecurity incidents have been reported. Cybersecurity breaches may well become THE main safety concern in our industry within the next few years. Increased regulation on this matter is to be expected.

Hacking

FDA has already published guidelines on its view on how medical device manufacturers ought to address cybersecurity in Medical Devices. The guidance outlines the documentation FDA expects to see in the premarket submissions as well as what is expected to be conducted for SOUPs and during postmarket activities.

At the core of this documentation lies the Cybersecurity Risk assessment. As already discussed, this type of risk assessment is slightly different to the typical Design Risk Assessment conducted during development.

To address this task, which many manufacturers will have to perform, we have developed a risk assessment template set specifically for documenting Cybersecurity risks and mitigations.

This template package is free to download and use for all Aligned Elements customers.

Are you interested in how the Cybersecurity Risk Assessment can be conducted and integrated with the rest of your Design Controls?

Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein. for a free demonstration!

The Aligned Elements Cybersecurity Risk Assessment package contains:

  • Risk assessment templates based on AAMI TIR 32, modeling Assets, Threats, Vulnerabilities and Risk Controls as Measures
  • More than 30 Best Practice Cybersecurity Risk Mitigations ready to use

If you are looking for a Cybersecurity Risk Assessment Word Template, you can download an example here:

Cyber Security Risk Assessment Word Template

 

Medical Devices and Exploratory Testing

Not long ago I sat down and had a really good talk with Ilari Henrik Aegerter from House Of Test. Ilari has an extensive background in high-quality testing and is one of the leading opinion makers in the area of context-driven testing. Ilari is also a strong advocate of Exploratory Testing and I challenged him to explain how Exploratory Testing could fit into the world of strict and regulated medical device development.

"One way of thinking about testing is value creation. Value is created by increasing the knowledge about the system.” starts Ilari, “Through testing, you gather information about your system’s desirable and undesirable behavior. Now, some testing methodologies accomplish this more efficiently than others.”

"In traditional, scripted testing, the task is to verify that the system behaves according to a formally specified input, a.k.a "confirmatory checking". I see this approach a lot in the medical device industry, often accompanied by extensive documentation, meticulously describing the input and output.” 

“The drawback of this approach is that it only traverses a very narrow path of the system. The generated results is equally meager when it comes to unveiling previously unknown knowledge about the system. It also abstains from tapping into the creativity and system expertise of the tester. 

Let me make this clearer with an illustration.”

 Ilari

“This diagram describes a medical device. As you can see, we have three ways of looking at the product:

  1. The User Needs: this area represents the features set the customer actually wants.
  2. The formal Specifications: this area is made up of the Design Controls, where the manufacturer attempts to formally define the system he is planning to build.
  3. The actual Implementation: this final area represents the feature set the instrument actually supports 

In the ideal case, a medical device is characterized by a perfect intersection between all three areas.

Now, let's evaluate what happens when this is not the case.

"Specified but not implemented" - This area translates to turn up as failed tests in the medical device documentation, something that becomes accentuated in companies that focus on verifying formal specifications. Not uncommon in the medical device industry.

"Implemented and specified but not covered by User Needs" - Sometimes called "Gold Plating". From a scripted test perspective, this area is going to transform into passed test cases. One might question the value of implementing things that the Users don't need, but there might exist business reasons that explain this area.

"Implementation and User Needs intersect but are not covered by Specifications" - This is the result of an experienced developer who knows what the User Needs even though it is not specified. Unfortunately, this part is not going to be covered by the formal verification so we can only hope that the implementation actually works.

Finally, the most important area is represented by the "unmet User needs". This area is going to come back as bugs and change requests in the post-market phase. Despite having done the things right, we have apparently failed to do the right things. Some of these user needs might have been explicitly left out for cost reasons or with the intention to be implemented later. However, the critical part consists of the "things we didn't think about".

And voila, here is where exploratory testing can make a big difference. By applying a broader testing mindset, not being constrained by the narrow path of formal specifications, wider test coverage is reached and more knowledge is obtained about the system. More knowledge is more value. The best part is that studies have shown that exploratory testing is much more efficient in finding bugs per time unit compared to traditional testing."

At this point, I asked Ilari if these unmet User Needs would not be uncovered during the Design Validation? Wasn't this exactly the objective of validation, to check that we have done the right things? 

"Partly", says Ilari, "the notions are related but not the same."

“In recent years, we have seen an increased focus on usability and human factor engineering in medical device development. We have also seen an increased regulatory focus on performing proper validation for each new release. The whole point of these disciplines is to engage the user's perspective since the user probably knows more about the final usage than the manufacturer. Usability and human factor engineering are valuable tools to emphasize, charter, and corroborate user needs in the design process.

Exploratory testing is focusing on similar issues. It leverages the creative and critical thinking of the tester, mimicking the thought process of a user. It challenges the tester as a domain expert and explicitly attempts to uncover tacit and unspecified needs."

I was still skeptical. "But, Ilari, we still need to be compliant with the FDA. We still have to show that the specifications are met and we still need to have documented proof. Exploratory testing makes a big point how traditional, scripted testing is obsessing about repeatability and documentation, indicating that these are not important steps." 

"That is not true.", Ilari responds, "I think this is a misconception about exploratory testing, i.e. that it does not test specifications and does not produce documented evidence. Of course, exploratory tests are documented. It's just that it might not use the same level of detail and that it better highlights undesired behavior, instead of only focusing on meticulously writing down everything that works as specified.” 

“My opinion is that exploratory testing generates more knowledge about the system. This is particularly valuable during the early development stages. If you have worked in the industry, you know exactly what I am talking about. At this stage, the specs are constantly changing, the device is continuously modified, a lot of factors have not yet stabilized and it is simply not efficient to start writing formalized test scripts at this point. During this phase, exploratory testing is the superior testing method for generating knowledge about the current system state.” 

“This idea is partly reflected in the FDA document Design Considerations for Pivotal Clinical Investigations for Medical Devices - Guidance for Industry, Clinical Investigators, Institutional Review Boards, and Food and Drug Administration Staff”. The document states that exploratory studies in the early, and even pivotal stage of clinical investigations, is advantageous, simply because it generates more knowledge about the system. In this line of thought, exploratory testing does not replace scripted testing, but certainly precedes and complements it.”

I must say that Ilari is building a case here. We leave the discussion at this point, both excited about the prospects and challenges of exploratory testing in a medical device context.

Mobile Health Apps - Which federal laws do I need to follow?

The Mobile Health Application market is glowing hot at the moment. New players are entering the market from left and right. Traditional blue chip players are moving in and new start-up's are popping up by the day. However, the medical device market is regulated market and finding out to which laws that apply for your mobile health app might be obvious. Start-up companies may not even realize that their apps are subjected by FDA regulations.

woman-smartphone-girl-technology

 

For those unsure about the legal status of their mobile health apps, the US Free Trade Comission has provided an excellent interactive online tool.

Take it for a spin right here! 

Learn more about how Aligned Elements can help with achieving regulatory compliance for your app

Request a live demo and let us show you how Aligned Elements can manage your documentation for your app

Software Change? Yes! - New 510(k)? Eh...

It is a well-known tendency that changes made to software (new features, bug fixes, etc.) often lead to new software errors. In a medical device context, this can have detrimental consequences.

The FDA requires that medical device manufacturers submit a new 510(k) when a marketed device has changes, including changes to software, that could significantly affect the safety or effectiveness of the device or when there are major changes in the intended use of the device.

Of course, the word "significantly" is the moving target here. To facilitate the decision whether a new 510(k) is required, the FDA issued the guidance document "Deciding When to Submit a 510(k) for a Software Change to an Existing Device" in October 2017.

FDA Commissioner Scott Gottlieb said a statement that the guidance..." enhances predictability and consistency for innovators deciding when to submit new 510(k)s by better describing the regulatory framework, policies, and practices underlying such a decision.”

Aligned has published an Aligned Elements Regulatory Wizard called When to Submit a 510(k) for a Software Change to an Existing Device that codifies this guidance document and makes it easy to assess and document whether the software changes (captured and managed in Design Control Items in Aligned Elements) will result in a new 510(k) or if documentation therefore suffices.

SoftwareChanges

The wizard When to Submit a 510(k) for a Software Change to an Existing Device is freely available for download from the Extension section of this website and serves as yet another example of how Aligned Elements can reduce the development documentation effort of your device.

 

Start your road to efficient medical device documentation here!

You spend too much time and money on documentation.

Agreed?

Good.

So what is your plan?

The regulations of the medical device industry require us to produce a pretty hefty chunk of documentation to show that the device is safe and efficient. If the documentation is not compliant, then it does not matter how safe, secure and performant the device itself it. Therefore, the documentation aspect that receives the largest share of attention is compliance. The most common path to a compliant stack of documents is to throw heaps of man-hours at the problem. Quantity seems to be the weapon of choice in many firms.

As a consequence, a large number of people get involved in the documentation creation and maintenance, especially people residing in the R&D part of the organization as most companies do not have Document Officers or documentation experts in their organization.

However, engineers and scientists are not necessarily the best writers (And they probably have no ambition to be.) Staff who are necessary for other tasks struggle to find the time to write these documents, and so the documents they do produce may be of lower quality than their usual work.

The effect on these people is often a suffocating feeling of inefficiency and frustration of spending an un-proportionally large part of the working day on menial documentation tasks, deciphering SOP:S and unpractical standards to compile documents that no-one reads (apart from the auditor).

lifebelt

Our studies show that up to 30% of the total project effort is spent on documentation required by regulations. There is also an overwhelming consensus in the industry that this is far too much. Money and time are inefficiently spent and morale buckles as the workload increases.

The good news is that these problems can be fixed. The bad news is that you are going to lose time, money, and people until you fix them.

Excelling at documentation efficiency is not intuitive to many R&D-centric organizations. However, considering the situation described above, good documentation practices is an investment. In the medical device industry, it is even a competitive dimension.

Your company can be efficient!!

Some good starting points are:

  • Make documentation efficiency a prioritized objective using measurable goals
  • Assign a responsible Manager
  • Set up a tight collaboration between the people writing templates and SOPs (Quality people) and the people using the templates and SOPs (R&D people)
  • Analyze your documentation processes
  • Apply the right software tools to automate documentation tasks

You can start right away!

Download our Medical Device Documentation Self-assessment paper and take a few minutes to complete it. We assure you that you will have started the road to more efficient documentation within the next 15 minutes!

The Aligned Elements OWASP Top 10 Checklist available now

As a medical device manufacturer, you are probably well aware of the increasing focus on cyber security. When developing your device, you are responsible for ensuring that it is safe to use from a cyber security perspective.
I think it is safe to say that the attention placed on cyber security aspects by autors and national authorities will only increase in the coming years.

FDA has issues a number of guidelines on how to implement and apply cybersecurity both on a process and product level. It is up to you as a medical device manufacturer to provide adequate cyber resilience in your products as well as the documentation required to prove it.

Aligned Elements users have for a long time been able to leverage Cyber Security extensions in their Aligned Elements configurations such as the Medical Device Cybersecurity Risk Assessment Templates and the Johner Institute Medical Device IT Security Product Requirements.

We are now happy to include the new OWASP Top 10 Checklist to our library of Cyber Security Extensions.

TOP 10 logo Final Logo Colour

What is it?

OWASP stands for “Open Web Application Security Project”. It is a non-profit entity with international recognition and focuses on collaboration to strengthen software security around the globe.

OWASP publishes the OWASP Top 10 list, which provides rankings of, as well as a remediation guidance for, the top 10 most critical web application security risks.

It uses the extensive knowledge and experience of the OWASP’s open community contributors, and is based on a consensus among security experts from around the world.
The OWASP Top 10 risks are ranked according to the frequency of discovered security defects, the severity of the uncovered vulnerabilities, and the magnitude of their potential impacts.

You can now easily assess and automatically document how well your medical device application stands up against the OWASP Top 10 by applying the Aligned Elements OWASP Top 10 Regulatory Assistant in your Aligned Elements projects.

How does it work?

This Assistant takes the shape of a Checklist where you assess your own medical device against the OWASP Top 10 security risks.

You start out by assessing whether the risk is applicable to your device at all, and if not, provide a qulified answer why this is not the case (the auditors rewards such qualifications).

If the risk is applicable, you are required to refer to the Aligned Elements Design Control Items that addresses the risk by selecting them in the UI.
You can compare your risk reduction controls against known best-practice remidiations mentioned in the OWASP Top 10 list.

When the checklist is completed, a Regulatory Assistance item is generated, containing all steps and your provided answers. This information remains stored in Aligned Elements for compliance purposes.

The OWASP Top 10 Regulatory Assistant Checklist is free to all Aligned Elements customers and can be applied to any Aligned Elements Web Server installation.

Note! The OWASP Top 10 Regulatory Assistant Checklist only works in Aligned Elements.